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1. Introduction  

     It is well known that U-6wt.% Nb (U-14at.% Nb) alloy has a microstructure containing 

martensitic phases supersaturated with Nb that can be obtained by rapid quenching the alloy from γ 

(bcc)-field solid solution to room temperature.  The high cooling rate forces the γ-phase solid 

solution to transform to variants of the low-temperature α (orthorhombic) phase in which Nb is 

forced to retain in the supersaturated solid solution.  However, the crystal lattice of supersaturated 

solution formed by rapid quenching is in unstable conditions and is severely distorted since the 

solubility of Nb in the α phase at room temperature is nearly zero under an equilibrium condition.   

Two variant phases, a monoclinic distortion of α phase that is designated as α′′ martensite and a 

tetragonal distortion of γ phase that is designated as γo phase, can form in the as-quenched alloy, as 

shown in Fig. 1.   

 

Fig. 1. Bright-field TEM images show the microstructure of a WQ-U6Nb alloy containing both 

heavily twinned α′′ (~90 vol.%) and γo (~10 vol.%) martensites. 



     We have learned from our previous TEM studies on the low-temperature aging of a water-quenched 

U6Nb (WQ-U6Nb) alloy that there are two possible transformation pathways for phase decomposition of 

the alloy supersaturated with 14 at.% of Nb upon aging at temperatures below 200°C, i.e., (1)  

supersaturated solid solution α″ → spinodal decomposition → α1 (Nb-lean) + α2 (Nb-rich) at 

200°C and (2) supersaturated solid solution α″ → spinodal ordering → α″po (partially ordered 

phase) → phase decomposition and precipitation → α (U) + αo (U3Nb) at ambient temperatures [1].  

The mechanisms for the spinodal transformation occurred at 200°C and the spinodal 

ordering occurred at ambient temperatures are quite similar; both are caused by the 

composition modulation of Nb except that the wavelength (λ ≈ 3 nm) of modulation for spinodal 

decomposition is larger than that (λ ≈ 0.5 nm) of modulation for the spinodal ordering, as illustrated 

in Fig. 2.   Since the Nb modulation for the spinodal ordering can occur within the unit cell 

of α″ phase through the nearest jumps of atoms along the [001] direction, the degree of long-range 

order (S) increases from 0 to 0.16 as a result of the Nb modulation, as illustrated in Fig. 3.  As we 

accelerated the ordering transformation by thermal heating a 15-year old alloy at 200°C, 

decomposition of the α″po phase into α (U) and a fully ordered αo (U3Nb) phase occured, as 

shown in Fig. 4.  Figure 5 shows the results of microhardness measurement and TEM analysis of the 

microstructural evolution in the 15-old alloy samples thermally heated at 200°C.  Here, it can be 

clearly seen that the α″po phase with a swirl-shape feature of antiphase boundaries (APBs) vanishes 

upon heating with the formation of U3Nb precipitates, which gives rise to the increase of 

microhardness (precipitation hardening).  Figure 6 shows the changes of tensile properties of the 15-

old alloy thermally heated at 200°C.  It can be readily seen that in addition to the increase of tensile 

strength (precipitation hardening), the ductility reduces from ~40% to ~14% after heating for 96 

hours.  In view of these adverse changes in tensile properties upon aging, we accordingly pursued a 



precipitation kinetics study on the 15-year old WQ-U6Nb alloy in order to develop an empirical time-

temperature-transformation model for predicting the remaining lifetime of the WQ-U6Nb alloy in the 

stockpile.   

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Schematic illustrations show the temperature dependency of the wavelength of composition 

modulation, in which the dark spheres represent the Nb-enriched atomic positions. 

 

 

Fig. 3.  Schematic illustration of the transformation sequence for an order-disorder 

transformation in the 15-year old, naturally aged WQ-U6Nb alloy. 
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Fig. 4. The partially ordered αo″ phase decomposes into α (U) and ordered U3Nb phases, as 

identified by observed and simulated electron diffraction patterns, when the 15-year old alloy was 

heated at 200ºC. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
                                     (b)                            (c)                            (d) 
 
Fig. 5. (a) Precipitation hardening occurred during thermal heating of the 15-year old alloy at 

200°C.  Dark-field TEM images show (b) APBs in the 15-year old alloy, (c) fine precipitates formed 

in the alloy after heating for 24 hours, and (d) relatively higher volume fraction of precipitates 

formed in the alloy after heating for 96 hours.  Notice in (c) and (d) that the APBs observed in (a) 

vanished after aging at 200°C. 
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Fig. 6.  Thermal aging of the 15-year old WQ-U6Nb at 200°C results in an increase of the yield 
strength (precipitation hardening) and a significant reduction of the tensile ductility. 

 

2. Experimental approach and methodology 

2.1.  Precipitation kinetics 

     The nucleation rate (N*) of a αo (U3Nb) phase formed in the partially ordered α″po matrix can be 

expressed as:  N* = nsνo ρ Nv exp[-(ΔGa + Δ Gc)/kT] (1), where N* is in units of nuclei per unit 

volume per unit time, ns is the number of matrix atoms on the surface of a nucleus, νo is the 

frequency of jumps, ρ is the direction factor of jumps, Nv is the number of atoms per unit volume, k is 

Boltzman constant, ΔGa is the activation energy for diffusion, and ΔGc is the critical energy barrier for 

nucleation.  Let Kv (the frequency factor) = nsvoρNv, thus eqn (1) can be rewritten as: N* = Kv exp[-

(ΔGa + ΔGc)/kT] (2).   

     After a nucleus appears, it can further reduce its free energy by continuous growth. The solute 

atoms can be transferred by diffusion in several steps: (a) the migration of solute atoms through the 

parent phase, (b) the migration of solute atoms across the interface boundary, and (c) the migration of 

solute atoms into the nucleus. For an one-dimensional needle (or plate) growth mechanism, the rate-

limiting step is to lengthen the αo (U3Nb) plates.  Since it is diffusion control, it obeys a parabolic 



growth law, and the lengthening of a lath [L(t)] can be expressed as: L(t) = C exp[-ΔGa/2kT] (t - to)1/2 

(3), where C is a constant, and to is the instant of time when the nucleus forms.   

     Nucleation actually continues at all times during the precipitation process.  In the time dto, 

n*dto nuclei are formed, where n* is in units of nuclei per unit time. The total volume (VT) which 

has transformed since the beginning of the precipitation (to) can be expressed as follows: VT = C n* 

∫ − 2/1)( ott dt (4).  It is noted that the maximum volume of αo (U3Nb) precipitates can be reached 

during the precipitation process is ~56 vol.%; the transformation can be considered to be 100% 

completed when the maximum vol.% of precipitates is reached.  If Y is the percentage transformed, 

and dx is a fraction of transformed solution from the untransformed solution (1 - Y), then we have (1 

- Y) dx = dY (5), where dY is the increment of fraction transformed.   

     Integrating the above equation, we obtain: Y = 1 – e-x (6), and x = VT/V0 = C (n*/V0) 

∫ − 2/1)( ott dt.   Thus,  Y = 1 - exp[- C N* ∫ − 2/1)( ott dt] (7).  By inserting eqn (3) into (7), it 

becomes y = 1 - exp(-0.5 C N* t)  (8), and by inserting eqn (2) into eqn (8), it becomes Y = 1 - exp{C0 

exp[-(1.5ΔGa + ΔGc)/kT] t} (9).  This has the form of Avrami equation [2]: Y = 1 – exp(-Ktn) (10) and 

K = C0 exp[-(ΔGa + ΔGc)/kT] (11), where K is a rate constant that depends on both nucleation and 

growth rates, and n is a constant that depends on the growth mechanism of precipitate.  On the 

assumption that the time (t) to a given percentage transformed Y (%) is inversely proportional to the 

rate of nucleation (K), it is possible to write ln t = 1.5ΔGa/kT + ΔGc/kT – ln C0 (12).  A schematic 

representation of the ln t vs. 1/T plot is shown in Fig. 7.  By differentiating eqn (12) with respect to 1/T, 

and since ΔGa is constant with T but ΔGc (which decreases with increasing undercooling) is not, it 

becomes: d(ln t)/d(l/T) = 1.5ΔGa/k + ΔGc/k + [dΔGc/d(1/T)]/kT (13).  

     The percentage transformed, Y(%), can be approximately measured from the change of 



microhardness according to law of mixtures: Ht = HmVm + HpVp and Vm+ Vp = 1, where, Vm is 

the volume fraction of matrix, Vp is the volume fraction of precipitate, Ht is the microhardness of 

transformed alloy, Hm is the microhardness of the alloy without precipitation, and Hp and Hf are the 

microhardness of the alloy with a specific volume fraction of precipitate and the 100% transformed 

alloy with Vp ≈ 56%, respectively.  The microhardness of the transformed alloy increases proportionally 

with the increasing volume of precipitates and reaches a maximum value when the alloy contains a 

maximum volume fraction of U3Nb precipitates; the microhardness starts to decrease when 

coarsening of the precipitates starts. Thus, the percentage transformed, Y(%), can be approximately 

evaluated as: Y(%) ≈ [(Ht - H0)/(Hf - H0)] (14), where Ht is the hardness of partially transformed 

material, H0 and Hf are the values of hardness corresponding to 0% and 100% transformed, respectively.   

     Since at low temperatures the activation energy for nucleation is small (ΔGc ≈ 0) as a result of large 

undercooling, thus eqn (13) reduces to d(ln t)/d(1/T) ≈ 1.5ΔGa/k (15). That is, the low-temperature 

part of time-temperature-transformation curve, as schematic illustration shown in Fig. 7, is linear, 

and the equation for the slope is: ln t = 1.5ΔGa/kT – ln C0  (16), and ln C0 is the intercept on the ln t 

vs. 1/T plot.  ΔGa can therefore be determined from the slope of eqn (16).  Given the ΔGa and C0 

determined by the graphical method, shown in Fig. 7, and a theoretical value of n = 1 [4] for the 

growth mechanism of needles and plates of finite dimensions, as shown in Fig. 5, the low-

temperature kinetics of precipitation reaction in the 15-year old alloy can therefore be modeled 

using Avrami approach represented by eqn (10). 

 

 

 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
       
 

 
Fig. 7.  Graphical meathod of determining the diffusion energy for diffusion (ΔGa) and activation energy 
for nucleation (ΔGc) from an inverse time-temperature-transformation (TTT) diagram. 
 

2.2. Experimental procedure 

     A stockpile-returned (15-year old) alloy part was employed for the aging kinetics study.  The major 

advantage of employing this alloy part is that the early stages of the precipitation process, i.e., spinodal 

ordering has been completed.  We can therefore focus the study on the precipitation kinetics of the α″po 

→ α (U) + αo (U3Nb) reaction.  Thermal aging experiments (Table 1) were conducted at temperatures 

ranging between 188°C and 250°C.  Microhardness measurements were then carried out to determine 

the volume fraction of U3Nb precipitate in the post-aged alloy samples according to eqn (14).  The  

percentage transformed Y(%) of the 15-year old alloy at temperatures below 188°C can therefore be 

extrapolated from the kinetic model obtained from this study based on eqn (15) by obtaining the value 

of activation energy for diffusion, ΔGa, using the graphical method illustrated in Fig. 7.   

3. Results and Discussion 

     Results of microhardness values measured from thermal aging of the 15-year old WQ-U6Nb alloy 

at 188 °C, 200 °C, 212 °C, 235 °C, and 250 °C are summarized in Table 1. The curves of 



microhardness versus aging time are shown in Fig. 8a together with the curve of microhardness 

obtained from the new WQ-U6Nb alloy thermally aged at 200 °C, which was reported previously 

[1], for a comparison. These microhardness curves obtained from thermal aging of the 15-year old 

WQ-U6Nb alloy samples clearly show the dependence of microhardness change on aging 

temperature.  However, it is noted that the peak microhardness value was reached for the aging 

experiment at 250 °C only since much longer aging periods are required to reach the peak value due 

to a sluggish kinetics at lower temperatures.  The 15-year old WQ-U6Nb alloy sample has a 

microhardness value of ~190 HV, and the peak microhardness value can be achieved from the 

heating is ~340 HV.   

     The thermal aging time (t) required to reach the microhardness value corresponding to the 

percentage transformaed, Y(%), by 20%, 50%, and 90% are evaluated according to the results of 

aging experiments that were conducted at temperatures (T) of 200 °C, 212 °C, 235 °C, and 250 °C.  

It is noted that data obtained from the experiment at 188 °C are not used here since a furnace 

calibration is in need for the accuracy of the recorded temperature at 188 °C. The results were then 

re-plotted as ln t versus 1/T, which is shown in Fig. 8b, in which a linear equation with a constant 

slope but with various intercept values (C) was obtained through line fitting; the equation can be 

expressed as:  

C
T

t −=
111342ln  

It is noted that the R-Square values for the three fitting lines are greater than 0.98 (a perfect fitting 

would have a value of unit) suggesting that the fitting is pretty good.  For a nucleation-controlled 

precipitation  process, the equation has the following form [2]:  

C
RT
G

t a −
Δ

=ln , 



The activation energy for diffusion (ΔGa) is evaluated to be 22.5 kcal/mol.  However, for a nucleation 

and growth process, the equation is in the form of eqn (16): 

C
RT
G

t a −
Δ

= 5.1ln , 

The activation energy diffusion is then evaluated to be 15.0 kcal/mol.  Accordingly, the aging times 

required to transform the 15-year old WQ-U6Nb alloy by 20%, 25%, 50%, 80%, and 90% at 

temperatures 30 °C, 50 °C, 75 °C, and 100 °C can be predicted and are summarized in Table 2 

together with a ductility reduction (~65%) measured from an alloy sample  transformed by 50%. 

Table 1: Microhardness values for heating of the 15-year old WQ-U6Nb alloy. 
 

Aging  Vickers Microhardness (HV) 
Temp (°C) Time (Hr.) Average Std. Dev. 

   
Naturally Aged 189.4 15.2 

2 195.8 9.2 
24 221.0 10.7 
96 237.3 13.4 

240 257.1 10.2 
720 271.2 7.4 

188 

1680 292.7 10.9 
2 205.2 10.5 

24 238.3 11.2 
96 274.0 11.3 

200 

240 293.0 9.7 
2 215.2 6.6 

24 254.3 11.0 212 
96 292.9 9.8 
24 276.5 12.9 

235 
96 318.0 12.1 
2 251.3 20.8 
8 269.8 36.4 

32 298.2 19.4 
96 325.0 11.9 

110 336.4 13.7 

250 

140 333.1 17.1 
 
 



 

 

 
 

 

 

 

Fig. 8. (a) Microhardness curves obtained from the 15-year old alloys thermally aged at 

temperatures between 188 °C and 250 °C and (b) a linear equation: C
T

t −=
111342ln was derived 

from a ln t vs. 1/T plot for different Y(%). 
 

Table 2  Life-time prediction for the percentage transformed of the 15-year old alloy 
at temperatures below 100 °C. 

 
 

 

 

 

 

 

 

4. Conclusion 

     Precipitation kinetics of a 15-year old WQ-U6Nb alloy containing partially ordered α″po phase was 

studied using microhardness measurement of the alloy thermally aged at temperatures between 188 °C 

and 250 °C in order to develop an empirical time-temperature-transformation model for predicting the 

remaining lifetime of the WQ-U6Nb alloy in the stockpile.  The microhardness increases as a result of the 

occurrence of decomposition reaction: α″po → α (U) + αo (U3Nb) during thermal aging of the 15-year old 

90%

50%

20%



alloy.  The percentage transformed, Y(%), of the alloy was approximately measured from the change of 

microhardness according to law of mixtures: Ht = HmVm + HpVp and Vm+ Vp = 1.  The microhardness 

of the transformed alloy increases proportionally with the increasing volume of precipitates and reaches a 

maximum value when the alloy contains a maximum volume fraction (~56%) of U3Nb precipitates; the 

microhardness starts to decrease when coarsening of the precipitates starts. Thus, the percentage 

transformed, Y(%), is approximately evaluated as: Y(%) ≈ [(Ht - H0)/(Hf - H0)].   

     The low-temperature kinetics of precipitation reaction were empirically modeled using Avrami 

equation: Y = 1 – exp(-Ktn), and K = C0 exp[-(ΔGa + ΔGc)/kT] together with a graphical meathod to 

determine the diffusion energy for diffusion (ΔGa) from an inverse time-temperature-transformation 

plot.  The activation energy diffusion was evaluated to be 22.5 kcal/mol, and the life-time of the 15-

year old WQ-U6Nb alloy thermally aged at temperatures below 100 °C were accordingly evaluated. 
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